Artikelini membahas tentang cara menentukan himpunan penyelesaian (HP) Sistem Persamaan Linear 3 Variabel menggunakan metode invers matriks. Transpose dari matriks kofaktor A diperoleh dengan cara mengubah baris menjadi kolom dan kolom menjadi baris. Perhatikan cara berikut. kof(A) = K 11. K 12. K 13. K 21. K 22. K 23. K 31. K 32. K 33
adalahmatriks berordo 3x3. Terdapat dua cara yang bisa dilakukan untuk mencari determinannya, yaitu menggunakan aturan Sarrus dan metode minor-kofaktor. Menentukan komposisi jumlah produk di suatu perusahaan yang dapat memberikan keuntungan maksimum.
Mencarideterminan matriks 3×3 dengan metode dekomposisi crout dan doolittle (bahasa) updated: Download rangkuman contoh soal matriks dalam bentuk pdf klik disini. 10++ Contoh Soal Matriks Minor Dan Kofaktor Kumpulan Untuk lebih jelasnya, berikut ini contoh soal menentukan minor dan kofaktor matriks ordo 3×3. Cara mencari determinan matriks 3×3.
Padakesempatan ini saya membagikan cara untuk menemukan minor, Kofaktor, dan adjoin. Materi ini sangat penting untuk dikuasai dalam matriks. Pada contoh ini
Meskipunprogram yang saya buat ini belum sempurna setidaknya anda dapat memberikan saran dan masukan agar program saya menjadi lebih baik. Program Invers Martiks ordo 3 x 3 : #include "stdio.h". #include . #include . using namespace std; int main () {. int a = 0; int b = 0;
InversMatriks 3x3 Menggunakan Matriks KofaktorUntuk bisa mencari Invers matriks 3x3, kalian harus bisa mencari determinan matriks 3x3. Silahkan tonton video
DeterminanMatriks Ordo 3X3 - Determinan Matriks Ordo 2x2 3x3 Nxn Dan Contoh Soalnya : Det a = a11 × a22 × a33 + a .. Cara menentukan determinan matriks 3x3 melalui meotde kofaktor atau aturan sarrus. Determinan matriks persegi dengan ordo 3x3 dapat dihitung dengan menggunakan dua cara, yaitu kaidah sarrus dan ekspansi kofaktor.
DeterminanMatriks berordo 3x3 dengan metode ekspansi kofaktor dan contoh soalnya.Semoga video ini bermanfaat. Jangan lupa dukung channel ini dengan cara lik
Danini memiliki kelebihan dibandingkan dengan mencari determinan matriks dengan metode metode sarrus, kita hanya bisa mencari determinan suatu matriks sampai pada ordo 3 x 3, tetapi kalau menggunakan metode kofaktor, kita bisa mencari determinan suatu matriks sampai ordo n x n. hehehe..hebat kan?.
Catatan elemen-elemen yang berada di lingkar biru merupakan diagonal utama matriks A yang ditukar posisinya, sedangkan elemen-elemen yang berada di lingkar oranye merupakan diagonal kedua matriks A yang dikalikan dengan minus satu (-1). Invers Matriks Ordo 3x3. Mencari invers matriks berordo 3x3 dapat dilakukan dengan dua cara, yaitu dengan adjoin dan transformasi baris elementer.
vXI9nd. Jika adik-adik menemukan soal tentang Matriks dan menentukan Minor Dan Kofaktor beserta adjoinnya, Simak pembahasan serta contoh soal yang afrizatul bagikan agar mengetahui cara mencari jawaban dari soal masuk ke contoh soalnya, ada baiknya adik-adik ketahui dulu apa yang dimaksud dengan minor matrik dan kofaktor matriks terutama ketika ingin mengerjakan soal tentang invers matriks pada bidang studi Yang Dimaksud Dengan Matriks Minor?Mencari nilai minor suatu matriks Mij adalah mencari nilai determinannya dengan cara menghilangkan elemen-elemen pada baris ke-i dan elemen-elemen pada kolom jika terdapat matriks ordo 2×2 maka ketika mencari nilai minor pada matriks tersebut kita mulai dari M11, M12 lalu M21 dan juga jika matriks ordo 3×3, kita bisa cari minornya dari M11, M12, M13 kemudian M21, M22, M23 dan M31, M32, Yang Dimaksud Kofaktor Matriks?Kofaktor matriks merupakan matriks yang dimana elemen-elemennya adalah nilai minor dari matriks nilai elemen pada matriks kofaktor berisi nilai minor yang sudah didapatkan sebelumnya sesuai dengan posisi elemen lebih mudah, adik-adik bisa menyimak contoh soal di bawah ini!Baca juga Contoh Soal Matriks Kelas 11 Beserta Jawabannya Essay & Pilihan GandaDisini kami menggunakan 1 contoh matriks dengan ordo 3×3, Jadi untuk matriks ordo 2×2, 4×4 dan sebagainya bisa menggunakan cara yang sama untuk mencari minor, kofaktor serta adjoin matriks A dengan ordo 3×3 dengan elemen 1, 4, 3, 2, 5, 1, 3, 4, 2 Tentukan minor, kofaktor dan adjoin dari matriks A!1. Mencari Minor Matriks 3×3Penyelesaian Pembahasan Pertama kita cari dulu M11 atau minor baris ke-1 dan kolom ke-1 yaitu Baris ke-1 = 1, 4, 3Kolom ke-1 = 1, 2, 3Sehingga menghasilkan matriks ordo 2×2 atau elemen yang tidak tertutup yaitu 5, 1, 4, 2. Dan kita cari kesimpulannya M11 adalah determinan matriks ordo 2×2 atau elemen yang tidak tertutup minor M11 maka bisa kita kalikan silang yaitu 5×2 dan 1×4, Dan elemen minor M11 hasilnya adalah M12, elemen yang tidak tertutup nya adalah 2, 1, 3, 2. Dan lakukan perkalian silang seperti cara M13, Ulangi cara tersebut sampai ke minor M33 atau baris ke-3 dan kolom mendapatkan hasil minor dari matriks A, sekarang kita mencari kofaktornya!2. Mencari Kofaktor Matriks 3×3Penyelesaian Pembahasan Kofaktor pada matriks A berarti simbolnya kof A, Kemudian masukkan elemen minor M11 sampai perhatikan kenapa ada yang positif dan ada yang negatif? Karena mencari kofaktor pada matriks simbolnya akan seperti ini Jadi setiap elemen berbeda-beda baris pertama positif, negatif, positifbaris kedua negatif, positif, negatifbaris ketiga positif, negatif, untuk matriks A dengan ordo 3×3, lalu bagaimana polanya jika matris dengan ordo 4×4 atau yang lainnya?Adik-adik bisa tambahkan saja di baris pertama negatif, baris kedua positif dan baris ketiga negatif, yang penting setiap baris sudah paham, kita masukkan elemen minor yang telah kita dapatkan tadi sesuai tanda atau pola yang telah sebelum mencari kofaktor pada suatu matriks, adik-adik harus mengetahui dulu cara mencari terakhir yaitu dengan mengkalikan tanda positif atau negatif sesuai angka atau nilai pada elemen minor Mencari Adjoin Matriks 3×3Berikutnya kita akan mencari adjoin matriks A tersebut, Hal ini sangat penting karena cara ini berguna untuk mencari invers suatu Pembahasan Untuk mencari adjoin pada sebuah matriks, kita cari dulu kofaktornya lalu kita transpose. Maka kesimpulannya adjoin matriks A sama dengan transpose matriks kita sudah mendapatkan hasil dari kofaktor matriks A 3×3 di cara yang ke-dua sebelumnya, maka kita cukup transpose saja matriks ingat bagaimana cara mentranspose sebuah matriks? Benar, Caranya mengubah baris menjadi kolom dan kolom menjadi kita telah mendapatkan hasil transpose kofaktor matrik A atau Adjoin matriks pembahasan singkat materi tentang Matriks untuk mencari Minor Dan Kofaktor beserta adjoin dengan ordo 3×3, Semoga bisa mudah dipahami dan membantu adik-adik dalam mengerjakan tugas sejenis.
Unduh PDF Unduh PDF Operasi invers biasa digunakan di aljabar untuk menyederhanakan perhitungan yang tanpanya bisa cukup sulit. Misalnya, jika ingin membagi dengan sebuah pecahan, Anda bisa mempermudah perhitungan dengan mengalikan kebalikannya. Artikel ini membahas tentang operasi invers. Karena matriks tidak bisa dibagi, Anda perlu mengalikan dengan inversnya. Menghitung invers matriks 3x3 secara manual memang cukup sulit, tetapi tetap harus dibahas. Anda juga bisa menghitung invers matriks dengan menggunakan kalkulator grafik canggih. 1 Cek determinan matriks. Pertama-tama hitung determinan matriks. Jika determinannya sama dengan 0 maka Anda berhenti di sini, karena matriks ini tidak memiliki invers. Determinan matriks M dapat disimbolkan dengan detM.[1] Untuk matriks 3x3, cari determinannya terlebih dahulu Untuk mengulang kembali cara mencari determinan sebuah matriks, lihat Menentukan Determinan Matriks 3X3. 2 Lakukan transpose pada matriks. Transpose berarti mencerminkan matriks terhadap sumbu diagonal utama, atau bisa dilakukan dengan menukar angka pada posisi i,j dan j,i. Ketika Anda melakukan proses transpose, perhatikan bahwa nilai pada diagonal utama dari kiri atas ke kanan bawah tidak berubah.[2] Anda juga bisa membuat transpose dengan menulis ulang baris pertama menjadi kolom pertama, baris tengah menjadi kolom tengah, dan baris ketiga menjadi kolom ketiga. Perhatikan angka yang diberi warna pada diagram dan lihat ke mana posisinya telah berpindah. 3 Cari determinan untuk tiap matriks minor 2x2. Setiap angka pada matriks 3x3 hasil transpose berpasangan dengan sebuah matriks "minor" 2x2. Untuk menemukan matriks minor pada tiap angka, pertama-tama tandai baris dan kolom pada angka yang Anda kerjakan. Ada lima angka yang ditandai pada matriks. Empat angka sisanya adalah matriks minor.[3] Pada contoh di atas, jika Anda ingin mencari matriks minor untuk angka pada baris kedua kolom pertama, tandai lima angka pada baris kedua dan kolom pertama. Empat angka sisanya adalah matriks minornya. Cari determinan tiap matriks minor dengan mengalikan silang diagonal-diagonalnya dan mengurangkannya, seperti pada contoh. 4 Buat matriks kofaktor. Masukkan hasil dari tahap sebelumnya ke dalam matriks kofaktor dengan memasukkan determinan setiap matriks minor pada posisi sesuai dengan matriks asal. Jadi, determinan yang dihitung dari angka pada posisi 1,1 matriks asal dimasukkan pada posisi 1,1. Anda harus membalik tanda secara selang-seling pada matriks ini, mengikuti pola "papan catur" seperti yang ditunjukkan pada contoh.[4] Ketika memberi tanda, nilai pertama pada baris pertama harus mengikuti tanda aslinya. Tanda pada nilai kedua dibalik. Tanda pada nilai ketiga seperti tanda aslinya. Lanjutkan untuk seluruh matriks mengikuti pola ini. Perhatikan bahwa tanda + dan - pada pola papan catur tidak menunjukkan apakah angka akhir harus positif atau negatif. Tanda tersebut hanya menunjukkan apakah Anda harus mempertahankan + atau membalik - tanda asal. Hasil akhir dari langkah ini disebut matriks adjugat dari matriks asal. Matriks ini juga sering disebut sebagai matriks adjoin. Matriks adjugat disimbolkan dengan AdjM. 5 Bagi tiap angka dari matriks adjugat dengan determinan. Ingat kembali nilai determinan matriks M yang telah Anda hitung pada langkah pertama untuk mengecek apakah matriks memiliki invers atau tidak. Sekarang bagi setiap angka pada matriks dengan nilai tersebut. Masukkan hasil setiap perhitungan pada posisi asalnya. Hasilnya adalah invers matriks dari matriks asal.[5] Untuk contoh matriks seperti yang ditunjukkan di diagram, determinannya adalah 1. Oleh karena itu, proses pembagian matriks adjugat akan menghasilkan matriks adjugat itu sendiri. Anda mungkin tidak akan selalu seberuntung itu. Alih-alih membagi, beberapa referensi menuliskan tahap ini sebagai perkalian setiap angka pada matriks M dengan 1/detM. Secara matematis, kedua pernyataan ini sama. Iklan 1 Gabungkan matriks identitas dengan matriks asal. Tuliskan matriks asal M, buat sebuah garis vertikal di sebelah kanannya, lalu tuliskan matriks identitas di sebelah kanannya. Sekarang Anda memiliki sebuah matriks yang tampak sebagai matriks dengan tiga baris dan enam kolom.[6] Ingat kembali bahwa matriks identitas adalah sebuah matriks khusus yang bernilai 1 pada tiap angka diagonal utama dari kiri atas ke kanan bawah, dan bernilai 0 pada semua posisi lain. 2 Lakukan operasi baris elementer. Tujuan Anda adalah membuat matriks identitas pada sisi kiri matriks yang baru dibuat. Saat melakukan operasi basis elementer pada sisi kiri, Anda harus melakukan proses yang sama pada sisi kanan, yang awalnya adalah matriks identitas.[7] Ingat bahwa operasi baris elementer adalah kombinasi dari perkalian skalar dan penjumlahan atau pengurangan baris, yang bertujuan untuk mengisolasi nilai matriks tertentu. 3Lanjutkan sampai Anda memperoleh matriks identitas. Terus ulangi operasi baris elementer sampai sisi kiri matriks baru Anda menjadi matriks identitas diagonalnya bernilai 1, dan angka lain bernilai 0. Ketika Anda sampai pada titik ini, matriks pada sisi sebelah kanan garis vertikal adalah invers dari matriks asal.[8] 4Tulis invers matriks. Seluruh angka pada sisi kanan garis vertikal adalah invers matriks.[9] Iklan 1Pilih kalkulator yang bisa menghitung matriks. Kalkulator sederhana 4-fungsi tidak bisa membantu Anda mencari invers secara langsung. Namun, beberapa kalkulator grafik canggih, seperti TI-83 atau CASIO-9860 yang bisa melakukan perhitungan berulang, dapat membantu Anda mempermudah perhitungan.[10] 2Masukkan matriks ke dalam kalkulator. Pertama-tama, masuk ke dalam fungsi Matrix di dalam kalkulator Anda dengan menekan tombol Matrix, jika ada tombolnya di kalkulator Anda. Pada kalkulator Texas Instrument, Anda perlu menekan tombol 2ndMatrix. 3Pilih submenu Edit. Untuk memasuki submenu, gunakan tombol panah atau pilih fungsi yang tepat pada tombol bagian atas kalkulator, tergantung posisi tombol pada kalkulator Anda.[11] 4Pilih nama matriks. Sebagian besar kalkulator bisa menghitung antara 3 sampai 10 matriks, yang diberi nama A sampai J. Biasanya pilih saja [A] dan teruskan perhitungan. Tekan tombol Enter setelah memasukkan pilihan.[12] 5Masukkan dimensi matriks. Artikel ini berfokus pada matriks 3x3. Namun, kalkulator dapat menangani matriks dengan ukuran lebih besar. Masukkan jumlah baris, lalu tekan Enter, dan masukkan jumlah kolom, dan tekan Enter.[13] 6 Masukkan setiap angka pada matriks. Layar kalkulator akan menunjukkan sebuah matriks. Jika Anda pernah menggunakan fungsi matriks, matriks sebelumnya akan muncul pada layar. Kursor akan berada pada posisi pertama matriks. Ketikkan angka pada matriks yang ingin Anda hitung, lalu tekan Enter. Kursor akan berpindah secara otomatis pada angka berikutnya dalam matriks, menggantikan nilai yang telah ada sebelumnya.[14] Jika Anda ingin memasukkan angka negatif, gunakan tombol negatif - pada kalkulator, bukan tanda kurang. Fungsi matriks tidak akan bisa membaca angka tersebut dengan sempurna. Jika diperlukan, gunakan tombol panah pada kalkulator untuk berpindah posisi dalam matriks. 7Keluar dari fungsi Matrix. Setelah Anda memasukkan semua angka pada matriks, tekan tombol Quit atau 2ndQuit, jika perlu. Anda akan keluar dari fungsi Matrix dan kembali pada menu utama pada kalkulator.[15] 8 Gunakan tombol invers untuk mencari invers matriks. Pertama-tama, buka fungsi Matrix dan gunakan tombol Name untuk memilih nama matriks yang Anda gunakan untuk mendefinisikan matriks Anda misalnya [A]. Lalu, tekan tombol invers pada kalkulator, . Anda mungkin perlu menekan tombol 2nd sebelumnya, tergantung jenis kalkulator Anda. Pada layar kalkulator akan tertulis . Tekan Enter, dan invers matriks akan tampak di layar kalkulator.[16] Jangan menggunakan tombol ^ pada kalkulator dan memasukkan perhitungan A^-1. Kalkulator tidak akan bisa memproses operasi ini. Jika Anda mendapatkan pesan kesalahan saat menekan tombol invers, ada kemungkinan matriks Anda tidak memiliki invers. Hitung kembali determinan untuk mengeceknya. 9 Ubah invers matriks Anda menjadi bentuk yang akurat. Pada perhitungan pertama kalkulator Anda akan memberikan hasil dalam bentuk desimal. Nilai ini bukanlah nilai yang paling "akurat". Anda bisa mengubah bentuk desimal menjadi bentuk pecahan, jika diperlukan. Jika Anda cukup beruntung, semua hasilnya adalah bilangan bulat, tetapi ini jarang sekali terjadi.[17] Kalkulator Anda mungkin memiliki fungsi untuk mengubah secara otomatis desimal menjadi pecahan. Misalnya, pada TI-86, masuk ke dalam fungsi Math, lalu pilih Misc, dan kemudian Frac, dan tekan Enter. Nilai desimal akan otomatis berubah menjadi pecahan. Iklan Anda bisa mengikuti semua langkah ini untuk mencari invers matriks yang tidak mengandung angka saja tetapi juga mengandung variabel, yaitu nilai tak tentu atau bahkan bentuk aljabar. Tuliskan semua langkah dalam proses ini karena sulit sekali menghitung invers matriks 3x3 di awang-awang. Ada program komputer yang bisa menghitung invers matriks[18] , sampai ukuran matriks 30x30. Cek apakah hasilnya akurat, dengan cara apa pun yang Anda sukai, misalnya mengalikan M dengan M-1. Pastikan bahwa M*M-1 = M-1*M = I. I adalah matriks identitas, yang bernilai 1 pada diagonal utama dan 0 pada posisi lainnya. Jika hasilnya bukan matriks identitas, Anda pasti melakukan kesalahan perhitungan. Iklan Peringatan Tidak semua matriks 3x3 memiliki invers. Jika determinan matriks adalah 0, matriks tersebut tidak memiliki invers. Perhatikan bahwa pada rumus kita perlu membagi dengan detM. Hasilnya tidak terdefinisi jika dibagi dengan nol. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
cara mengerjakan determinan matriks ordo 3x3 dengan kofaktor? 1. cara mengerjakan determinan matriks ordo 3x3 dengan kofaktor? 2. buatkan matriks dengan ordo 3x3 dan carilah a minor b kofaktor c determinan 3. jawablah determinan matriks 3x3 berikut ini dengan metode kofaktor.​ 4. bagaimana cara perkalian matriks 3x3 sama dengan 3x2 dan sebaliknya 3x2 sama dengan 3x3?? 5. bagaimana cara mencari determinan dari matriks 3x3 jika hanya diketahui adjointnya dan <0? 6. Cara mencari Adjoin dari Matriks ORDO 3x3 7. buatkan sebuah matrik dengan ordo 3x3 dan carilah a. minor b. kofaktor c. determinan 8. carilah minor matriks kofaktor adjoin dan invers dari matrik matrik berikut ​ 9. ada yang ngerti cara mencari x pada matriks singular ber ordo 3x3 ? 10. Bagaimana cara mencari determinan dari matriks 3x3 jika hanya diketahui adjointnya dan <0? 11. Carilah minor, kofaktor, adjoin, dan invers dari matriks di bawah ini tolong bantuanya yaaa ☺ 12. 20 contoh soal dan jawabanya tentang determinan matriks ordo 3x3 metode kofaktor 13. Yang merupakan transpos dari kofaktor suatu matriks adalah 14. Carilah minor,kofaktor,adjoin dan invers dari matriks di bawah ini. tolong bantuanya yaaa 15. gimana cara menyelesaikan perkalian matriks ordo 3x3 dengan 3x3 1. cara mengerjakan determinan matriks ordo 3x3 dengan kofaktor? memakai ekspansi baris atau kolom 2. buatkan matriks dengan ordo 3x3 dan carilah a minor b kofaktor c determinan ordo 3×3 adalah kofaktor 3. jawablah determinan matriks 3x3 berikut ini dengan metode kofaktor.​ Jawaban A= -55Penjelasan dengan langkah-langkah=1.10+56 - 4.4+24 + 9.14-15= - + 9. -1=66 - 112 + -9= -55kalo salah maaf ya, ini saya pake cara cepat 4. bagaimana cara perkalian matriks 3x3 sama dengan 3x2 dan sebaliknya 3x2 sama dengan 3x3?? Salam BrainlySenin, 10 Desember 2018JawabPenjelasan dengan langkah-langkahPerkalian matriks ordo 3x3 degn 3x2 atau sebaliknya.. Tdk dapat dikalikan krna baris matriks ordo 3x3 tidak sama degn kolom matriks 3x2 5. bagaimana cara mencari determinan dari matriks 3x3 jika hanya diketahui adjointnya dan <0? Jawaban6Penjelasan dengan langkah-langkah3×3=6-0=6 gampang kan 6. Cara mencari Adjoin dari Matriks ORDO 3x3 1. Matriks Kofaktor2. Adjoin3. Nilai elemen4. rumus invers Matriks ordo 3 x 3 7. buatkan sebuah matrik dengan ordo 3x3 dan carilah a. minor b. kofaktor c. determinan ordi 3×3 adalah kofaktora= 2 1 4 -1 3 2 1 4 5minora= 7 -7 -7 -11 6 7 -5 8 8kofaktor a= 7 7 -7 11 6 -7 -5 -8 8determinandet a = 14+7-28 = -7 8. carilah minor matriks kofaktor adjoin dan invers dari matrik matrik berikut ​ JawabPenjelasan dengan langkah-langkahkalo betul jaikan jawaban tercerdas y 9. ada yang ngerti cara mencari x pada matriks singular ber ordo 3x3 ? matriks singular itudeterminan matriks = 0 10. Bagaimana cara mencari determinan dari matriks 3x3 jika hanya diketahui adjointnya dan <0? Penjelasan dengan langkah-langkahKalikan angka yang telah ditemukan denganelemen yang Anda pilih. Ingat, Anda telahmemilih elemen dari baris atau kolom referensiketika Anda memutuskan baris dan kolom yangakan dicoret. Kalikan elemen ini dengandeterminan matriks 2 x 2 yang telah Andatemukan.•Pada contoh, kita memilih a11 yang bernilai1. Kalikan angka ini dengan -34 determinandari matriks 2 x 2 untuk mendapatkan 1*-34= simbol dari jawaban Anda. Langkahselanjutnya adalah Anda harus mengalikanjawaban Anda dengan 1 atau-1 untukmendapatkan kofaktor dari elemen yang Andapilih. Simbol yang Anda gunakan tergantungdengan letak elemen pada matriks 3 x 3. Ingat,tabel simbol ini digunakan untuk menentukanpengali elemen AndaKarena kita memilih a11 yang bertanda a +,kita akan mengalikan angka dengan +1 ataudengan kata lain, jangan diubah. Jawabanyang muncul akan sama, yaitu• Cara lain untuk menentukan simbol adalahdengan menggunakan formula -1i+j yangmana i dan j adalah baris dan kolom proses yang sama untuk elemenketiga. Anda memiliki satu kofaktor lagiuntuk menentukan determinan. Hitung i untukelemen ketiga di baris atau kolom referensi merupakan cara cepat menghitungkofaktor a13 pada contoh kitaCoret baris ke-1 dan kolom ke-3 untuk4mendapatkan [24 61Determinannya adalah 2*6 - 4*4 = dengan elemen a13 -4 * 3 = -12.• Elemen a13 bersimbol + pada tabel simbol,sehingga jawabannya adalah = a + a + a6 Ulangi proses ini untuk elemen kedua padabaris atau kolom referensi Anda. Kembalilahke matriks awal 3 x 3 yang Anda lingkari barisatau kolomnya sebelumnya. Ulangi proses yangsama dengan elemen tersebut⚫ Coret baris dan kolom elemen tersebut. Padakasus ini, pilih elemen a12 yang bernilai 5.Coret baris ke-1 1 5 3 dan kolom ke-2 5 4 6.Jadikan elemen yang tersisa menjadimatriks 2x2. Pada contoh kita, matriks ordo2x2 untuk elemen kedua adalah [24 721• Tentukan determinan matriks 2x2 formula ad - bc. 2*2 - 7*4 = -24• Kalikan dengan elemen pada matriks 3x3yang Anda pilih. -24 * 5 = -120• Putuskan untuk mengalikan hasil di atasdengan -1 atau tidak. Gunakan tabel simbolatau formula -1ij Pilih elemen a12 yangpada tabel simbol. Ganti simboljawaban kita dengan -1*-120 = hasil ketiga hitungan Anda. Iniadalah langkah terakhir. Anda telahmenghitung tiga kofaktor, satu untuk setiapelemen pada satu baris atau kolom. Jumlahkanhasil tersebut dan Anda akan menemukandeterminan matriks 3 x 3.• Pada contoh, determinan matriks adalah -34 +120 +-12-74 11. Carilah minor, kofaktor, adjoin, dan invers dari matriks di bawah ini tolong bantuanya yaaa ☺ kalo bener jadikan yang terbaik ya.. sukses dek 12. 20 contoh soal dan jawabanya tentang determinan matriks ordo 3x3 metode kofaktor 3×3=9 betul betul betul 13. Yang merupakan transpos dari kofaktor suatu matriks adalah yaitu adjoin dari suatu matriks 14. Carilah minor,kofaktor,adjoin dan invers dari matriks di bawah ini. tolong bantuanya yaaa kalau nyatet sambil di cek ya kali aja ad salah hitung 15. gimana cara menyelesaikan perkalian matriks ordo 3x3 dengan 3x3 kyk gitu ditambah dan dikurangi baru nanti di kali aja insyalloh ktmu.. semoga membantu